Mongoose UB-360/4α

X, K, Ка-диапазоны, Laser 360°

Характеристики

- Фильтр ложных тревог
- Выключатель питания с регулятором мощности
- · City/Highway переключатель
- Переключатель яркости дисплея
- Выключатель звукового подтверждения
- Универсальный светодиодный дисплей
- Кабель питания с адаптером для прикуривателя
- Индикация уровня принимаемого сигнала
- Тип приемника супергетеродин с двойным преобразованием
- Потребляемый ток 210-450 мА

Принимаемые диапазоны	Чувствительность	
Х-диапазон	110 дБм	
К-диапазон	102 дБм	
Ка-диапазон	95 дБм	
Laser	1 mW	

Mongoose UB-360/5α

X, Ku, K, Ка-диапазоны, Laser 360°

Характеристики

- Фильтр ложных тревог
- Выключатель питания с регулятором мощности
- · City/Highway переключатель
- Переключатель яркости дисплея
- Выключатель звукового подтверждения
- Универсальный светодиодный дисплей
- Кабель питания с адаптером для прикуривателя
- Индикация уровня принимаемого сигнала
- Тип приемника супергетеродин с двойным преобразованием
- Потребляемый ток 210-450 мА

Принимаемые диапазоны	Чува	ствительность
X-диапазон Ки-диапазон К-диапазон Ка-диапазон Laser	110 дБм 110 дБм 102 дБм 95 дБм 1 mW	

Mongoose UB-180MX

Х, К-диапазоны

Характеристики

- Световая и звуковая индикация тревоги
- Выключатель питания с регулятором громкости
- Фильтр ложных тревог
- 2-ступенчатое автоматическое понижение уровня звука
- Полностью автоматическое управление
- Кабель питания с адаптером для прикуривателя
- Простая установка
- Эффективен при обнаружении короткоимпульсных радаров
- Тип приёмника супергетеродин с двойным преобразованием
- Потребляемый ток 210-450 мА

_							
	DIAL	има	OB ALL	O 11		200	21111 1
	шин	има	EMP	ΕЩ	иен	a. 31	ины
				_			

Чувствительность

X-диапазон К-диапазон 110 дБм 102 дБм

Mongoose UB-180/5

X, Ku, K, Ka — диапазоны, Laser 180° Эффективный прием X и K сигналов в диапазоне 360°

Характеристики

- Фильтр ложных тревог
- Выключатель питания с регулятором мощности
- · City/Highway переключатель
- Переключатель яркости дисплея
- Выключатель звукового подтверждения
- Универсальный светодиодный дисплей
- Кабель питания с адаптером для прикуривателя
- Тип приемника супергетеродин с двойным преобразованием
- Потребляемый ток 210-450 мА

Принимаемые диапазоны	Чувствительность
Х-диапазон	110 дБм
Ки-диапазон	110 дБм
К-диапазон	102 дБм
Ка-диапазон	95 дБм
Laser	1 mW

Подготовлено компанией AutoSet. Автосигнализации и автоэлектроника. www.AutoSet.ru

Как действуют радары, которые используют инспекторы ГАИ?

Принцип действия любых радаров (и автомобильных, и тех, к примеру, которые стоят на вооружении войск ПВО, охраняющих небо над нашей страной) основан на эффекте, который австрийский ученый Кристиан Доплер обнаружил еще в 1842 году. Этот эффект характерен для любого волнового излучения, будь то свет или звук, а суть его в том, что длина волны (или, если угодно, частота излучения — эти параметры взаимосвязаны) меняется, если излучение испускает движущийся объект или если движется приемник излучения. Понять это нетрудно даже тому, кто не очень обременял себя в школе изучением физики. Представьте, что вы плывете на лодке навстречу бегущим волнам — они будут биться о форштевень чаще. Разверните лодку по ходу волн и приналягте на весла — удары о корму будут намного реже.

Итак, при приближении приемника к источнику излучения длина волны уменьшается, а частота, соответственно, возрастает. При удалении все происходит наоборот. Величину изменения длины или частоты волны можно измерить весьма точно, а, значит, точно вычислить и скорость, и направление объекта. Кстати, Кристиан Доплер был не только физиком, но и астрономом, и именно в этой области открытый им эффект принес фундаментальное открытие. Заметив, что спектры звезд и галактик смещены в сторону длинноволновой красной части, ученые сделали резонный вывод — они удаляются. Так была выдвинута гипотеза разбегающейся Вселенной.

В технике же эффект Доплера был положен в основу работы многочисленных радаров "самого разного назначения. Термин этот — аббревиатура, полученная из начальных букв английских слов RAdio Detecting And Ranging — радиообнаружение и определение местоположения. Эти приборы и позволяют дорожной полиции выявлять нарушителей скоростного режима. Так какие же радары использует наша ГАИ, и велики ли их возможности?
Подготовлено компанией AutoSet. Автосигнализации и автоэлектроника. www.AutoSet.ru

Как действуют радары, которые используют инспекторы ГАИ?

Принцип действия любых радаров (и автомобильных, и тех, к примеру, которые стоят на вооружении войск ПВО, охраняющих небо над нашей страной) основан на эффекте, который австрийский ученый Кристиан Доплер обнаружил еще в 1842 году. Этот эффект характерен для любого волнового излучения, будь то свет или звук, а суть его в том, что длина волны (или, если угодно, частота излучения — эти параметры взаимосвязаны) меняется, если излучение испускает движущийся объект или если движется приемник излучения. Понять это нетрудно даже тому, кто не очень обременял себя в школе изучением физики. Представьте, что вы плывете на лодке навстречу бегущим волнам — они будут биться о форштевень чаще. Разверните лодку по ходу волн и приналягте на весла — удары о корму будут намного реже.

Итак, при приближении приемника к источнику излучения длина волны уменьшается, а частота, соответственно, возрастает. При удалении все происходит наоборот. Величину изменения длины или частоты волны можно измерить весьма точно, а, значит, точно вычислить и скорость, и направление объекта. Кстати, Кристиан Доплер был не только физиком, но и астрономом, и именно в этой области открытый им эффект принес фундаментальное открытие. Заметив, что спектры звезд и галактик смещены в сторону длинноволновой красной части, ученые сделали резонный вывод — они удаляются. Так была выдвинута гипотеза разбегающейся Вселенной.

В технике же эффект Доплера был положен в основу работы многочисленных радаров "самого разного назначения. Термин этот — аббревиатура, полученная из начальных букв английских слов RAdio Detecting And Ranging — радиообнаружение и определение местоположения. Эти приборы и позволяют дорожной полиции выявлять нарушителей скоростного режима. Так какие же радары использует наша ГАИ, и велики ли их возможности?
Подготовлено компанией AutoSet. Автосигнализации и автоэлектроника. www.AutoSet.ru